Near-Offshore Oceanic Geothermal Resources Developed from On-Shore Directional Drilling

Author:

Waibel Al1,Jones Adam1

Affiliation:

1. Columbia Geoscience, Hillsboro, Oregon, USA

Abstract

New opportunities have emerged for the application of oilfield technologies transfer, such as directional drilling, to utilize base-load renewable energy. Development of geothermal resources have largely been restricted to on-shore sites, yet a major category of untapped geothermal development prospects are near-shore resources. Development of near-shore geothermal resources can provide renewable base-load electrical power options to areas that are now served by non-renewable power generation which can supply domestic, commercial, or industrial land-based and marine use. It may also support emerging technologies such as battery charging and green hydrogen generation for land-based and marine transportation or commercial applications. Additionally, the need for reliable and renewable base-load electrical power to support U.S. Naval operations has increased markedly in recent years, particularly in the western Pacific. The advantages of geothermal over other advanced renewable power sources is its base-load reliability, a relatively small footprint in terms of land use and the long-term durability of the equipment. Additionally, this generally untapped energy field provides an opportunity for oil and gas development companies to expand the application of their technology, experienced staff, and knowledge. However, as exploration and development of these geothermal resources may have substantial effects on their near-shore locations, it is important that this development recognize the commercial and environmental value of the near-shore marine environment and mitigate any effects from these activities. Many of the potential near-shore and shallow marine geothermal plays are associated with volcanic activity. However, non-volcanic structural plays also hold significant potential (figure 1). Perhaps the most dramatic and well-documented volcanic hydrothermal sites are the spectacular deep marine "black-smoker" vents associated with oceanic spreading centers. Yet, other than a few notable exceptions, such as Iceland (Atkins & Audunsson, 2013), these systems are usually located far from shore in deep marine environments (Hiriart et al., 2010) and have currently limited potential for widespread development. Other volcanic geothermal resources occurring near-shore are like structurally controlled settings observed on land. Examples include: Lihir Island, Papua-New Guinea (Peterson et.al., 2002; White, et.al., 2010); in the Mediterranean Sea (Fytikas et.al., 2005; Meteoboy, 2013) and the shores of Mexico’s Baja Peninsula (Vidal, et.al., 1978; Prol-Ledesma et.al., 2002). The western Pacific area is rife with volcanic islands. Yet only a few of these volcanoes have had geothermal resources developed for electrical production. One of the limiting features for geothermal evaluation of these volcanic islands is that, while they are often massive volcanoes, only the central top of the volcano is exposed above the water, while the bulk of the flanks are submerged beneath the sea. These volcanoes would have the same geothermal resource potential as their terrestrial counterpart but due to their partially submerged setting, they have been out of view and out of mind for the geothermal development community. With advances in directional drilling technologies over the past decades, it is now possible to develop near-shore (1~1.5 km) geothermal resources from on-shore locations, increasing the economic viability of these prospects while minimizing seafloor disturbance.

Publisher

OTC

Reference26 articles.

1. Atkins, Darren and HaraldurAudunsson, 2013, Exploration techniques for locating offshore geothermal energy near Iceland. Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford University. pp. 1168–1178.

2. Assessment of the geothermal potential for Pagan Island, CNMI;Blackwell;SMU Geothermal Laboratory publication,2009

3. Geologic, structural, and fluid inclusion studies of El Bronce epithermal vein system, Petorca, central Chile;Camus;Econ. Geol.,1991

4. Geology, mineralization, and hydrothermal evolution of the Ladolam gold deposit, Lihir Island, Papua New Guinea;Carman,2003

5. Herman Lake TCPA assessment, Sulphur Bank Mine;Columbia Geoscience,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3