Chain-Soil Interaction in Carbonate Sand

Author:

Frankenmolen S. F.1,White D. J.2,O'Loughlin C. D.2

Affiliation:

1. Shell Global Solutions International BV

2. University of Western Australia

Abstract

Abstract The design of mooring anchors of Floating LNG systems on Australia's North West Shelf (NWS) is challenging due to the high mooring loads and the seabed which comprises carbonate soils. Anchors with an embedded padeye require engineering of the chain inverse catenary and management of interfaces between the anchor and mooring system design teams. While considerable investigation of the anchor line performance in clay has been conducted, there has been limited investigation into the anchor line behavior in sand, and none in carbonate sand. The limited relevant information in the codes and standards and public domain may therefore result in over-conservative design for the ground chain, the anchors and the overall mooring system. In order to optimize the design of the mooring systems in relation to a developing Floating LNG project, a program of chain-soil interaction tests has been performed in a geotechnical centrifuge at the Centre of Offshore Foundation Systems in the University of Western Australia. The purpose of the testing was to provide data to allow better assessment of the shape and load distribution on the chain inverse catenary of a large mooring chain at high loads in carbonate sand. The testing achieved scaled loads equivalent to the 10,000 year return period storm experienced by an FLNG facility on the NWS, and included detailed profiling of the inverse catenary at different loading stages. The program spanned a range of chain sizes and soil densities as characterized by miniature cone penetrometer tests. This paper outlines the design considerations for chain-soil interaction and provides guidance for interface management, which sets the centrifuge modelling program in context. The results of the centrifuge program are presented and interpreted against the backdrop of conventional design assumptions and existing theories for chain-soil interaction. Using the interpreted results, a new method for the analysis of chain-soil interaction in carbonate sands is proposed, which includes the use of cone tip resistance profiles. The method and input parameters are calibrated via the centrifuge test results. The insights gained have resulted in improved design assumptions for the conditions modelled, and further refinements of the analysis approach are foreshadowed. These outcomes have led to improved estimates of the inverse catenary configurations and mooring anchor loads, and future work is anticipated to allow more general improvements to design practice.

Publisher

OTC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Investigation of the Capacity of Anchor Chain Links in Clay;Journal of Geotechnical and Geoenvironmental Engineering;2024-10

2. Evaluation of Seabed Trenches Based on Floater Hydrodynamic Calculation;Day 3 Wed, May 08, 2024;2024-04-29

3. Anchor geotechnics for floating offshore wind: Current technologies and future innovations;Ocean Engineering;2023-07

4. 锚泊线海床开槽与锚泊基础承载力研究进展综述;Journal of Marine Science and Application;2023-06

5. Insight into the Behavior of a Caisson Anchor under Cyclic Loading in Calcareous Silt;Journal of Geotechnical and Geoenvironmental Engineering;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3