Effects of low and high irradiation levels on growth and PSII efficiency in Lemna minor L.

Author:

Lepeduš Hrvoje1,Vidaković-Cifrek Željka2,Šebalj Iris2,Antunović Dunić Jasenka3,Cesar Vera3

Affiliation:

1. Josip Juraj Strossmayer University of Osijek, Faculty of Humanities and Social Sciences, L. Jägera 9, HR-31000 Osijek, Croatia

2. University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, HR- 10000 Zagreb, Croatia

3. Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia

Abstract

Plant growth and reproduction depend on light energy that drives photosynthesis. In the present study we compared growth characteristics, photosynthetic pigments content and photosystem II (PSII) performance in Lemna minor L. grown in two different irradiation regimes: low light (LL) – 50 μmolPHOTONS m-2 s-1 and high light (HL) – 500 μmolPHOTONS m-2 s-1. The main goal was to investigate the photosynthetic regulatory mechanisms that ensure adjustment to different light conditions and integrate these observations with the data on plant multiplication and biomass production. For this purpose, we measured chlorophyll (Chls) and carotenoid (Cars) contents and analyzed the energy fluxes through the PSII by saturation pulse method as well as by Chl a transient induction and JIP test. In a comparison of the effect of LL and HL on plant multiplication and fresh biomass, it was shown that the effect on growth was primarily attributed to the biomass reduction in LL while the effect on number of plants was much smaller. Total Chl and Cars contents were decreased in plants exposed to HL which indicated long-term acclimation response to the increased irradiance. Furthermore, the HL plants revealed better capability for the utilization of absorbed light in photosynthesis accompanied by photoprotective adjustment of certain number of PSII reaction centers from active to dissipative mode of functioning. In conclusion, our study showed that duckweed plants had great adjustment potential to different irradiation conditions, which might be of great importance not only under variable light availability but also when simultaneously challenged by some other environmental disturbance (e.g. different pollutants).

Publisher

University of Zagreb, Faculty of Science, Department of Biology

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3