Effect of Oscillation Structures on Inertial-Range Intermittence and Topology in Turbulent Field

Author:

Yang Kun,Xia Zhenhua,Shi Yipeng,Chen Shiyi

Abstract

AbstractUsing the incompressible isotropic turbulent fields obtained from direct numerical simulation and large-eddy simulation, we studied the statistics of oscillation structures based on local zero-crossings and their relation with inertial-range intermittency for transverse velocity and passive scalar. Our results show that for both the velocity and passive scalar, the local oscillation structures are statistically scale-invariant at high Reynolds number, and the inertial-range intermittency of the overall flow region is determined by the most intermittent structures characterized by one local zero-crossing. Local flow patterns conditioned on the oscillation structures are characterized by the joint probability density function of the invariants of the filtered velocity gradient tensor at inertial range. We demonstrate that the most intermittent regions for longitudinal velocity tend to lay at the saddle area, while those for the transverse velocity tend to locate at the vortex-dominated area. The connection between the ramp-cliff structures in passive scalar field and the corresponding saddle regions in the velocity field is also verified by the approach of oscillation structure classification.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3