Comprehensive Studies on Rarefied Jet and Jet Impingement Flows with Gaskinetic Methods

Author:

Cai Chunpei,He Xin,Zhang Kai

Abstract

AbstractThis paper presents comprehensive studies on two closely related problems of high speed collisionless gaseous jet from a circular exit and impinging on an inclined rectangular flat plate, where the plate surface can be diffuse or specular reflective. Gaskinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include flowfield properties such as density, velocity components, temperature and pressure, and impingement surface properties such as coefficients of pressure, shear stress and heat flux. Also included are the averaged coefficients for pressure, friction, heat flux, moment over the whole plate, and the averaged distance from the moment center to the plate center. The final results include complex but accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. Exponential, trigonometric, and error functions are embedded in the solutions. The results illustrate that the past simple cosine function approach is rather crude, and should be used cautiously. The gaskinetic method and processes are heuristic and can be used to investigate other external high Knudsen number impingement flow problems, including the flowfield and surface properties for high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3