Abstract
AbstractA numerical time-stepping algorithm for differential or partial differential equations is proposed that adaptively modifies the dimensionality of the underlying modal basis expansion. Specifically, the method takes advantage of any underlying low-dimensional manifolds or subspaces in the system by using dimensionality-reduction techniques, such as the proper orthogonal decomposition, in order to adaptively represent the solution in the optimal basis modes. The method can provide significant computational savings for systems where low-dimensional manifolds are present since the reduction can lower the dimensionality of the underlying high-dimensional system by orders of magnitude. A comparison of the computational efficiency and error for this method are given showing the algorithm to be potentially of great value for high-dimensional dynamical systems simulations, especially where slow-manifold dynamics are known to arise. The method is envisioned to automatically take advantage of any potential computational saving associated with dimensionality-reduction, much as adaptive time-steppers automatically take advantage of large step sizes whenever possible.
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献