A Unified Gas Kinetic Scheme for Continuum and Rarefied Flows V: Multiscale and Multi-Component Plasma Transport

Author:

Liu Chang,Xu Kun

Abstract

AbstractAs a continuation of developing multiscale method for the transport phenomena, a unified gas kinetic scheme (UGKS) for multi-scale and multi-component plasma simulation is constructed. The current scheme is a direct modeling method, where the time evolution solutions from the Vlasov-BGK equations of electron and ion and the Maxwell equations are used to construct a scale-dependent plasma simulation model. The modeling scale used in the UGKS is the mesh size scale, which can be comparable to or much larger than the local mean free path. As a result, with the variation of modeling scales in space and time through the so-called cell's Knudsen number and normalized Larmor radius, the discretized governing equations can recover a wide range of plasma evolution from the Vlasov equation in the kinetic scale to different-type of magnetohydrodynamic (MHD) equations in the hydrodynamic scale. The UGKS provides a general evolution model, which goes to the Vlasov equation in the kinetic scale and many types of MHD equations in the hydrodynamic scale, such as the two fluids model, the Hall, the resistive, and the ideal MHD equations. All current existing governing equations become the subsets of the UGKS, and the UGKS bridges these distinguishable governing equations seamlessly. The construction of UGKS is based on the implementation of physical conservation laws and the un-splitting treatment of particle collision, acceleration, and transport in the construction of a scale-dependent numerical flux across a cell interface. At the same time, the discretized plasma evolution equations are coupled with the Maxwell equations for electro-magnetic fields, which also cover a scale-dependent transition between the Ampére's law and the Ohm's law for the calculation of electric field. The time step of UGKS is not limited by the relaxation time, the cyclotron period, and the speed of light in the ideal-MHD regime. Our scheme is able to give a physically accurate solution for plasma simulation with a wide range of Knudsen number and normalized Larmor radius. It can be used to study the phenomena from the Vlasov limit to the scale of plasma skin depth for the capturing of two-fluid effect, and the phenomena in the plasma transition regime with a modest Knudsen number and Larmor radius. The UGKS is validated by numerical test cases, such as the Landau damping and two stream instability in the kinetic regime, and the Brio-Wu shock tube problem, and the Orszag-Tang MHD turbulence problem in the hydrodynamic regime. The scheme is also used to study the geospace environment modeling (GEM), such as the challenging magnetic reconnection problem in the transition regime. At the same time, the magnetic reconnection mechanism of the Sweet-Parker model and the Hall effect model can be connected smoothly through the variation of Larmor radius in the UGKS simulations. Overall, the UGKS is a physically reliable multi-scale plasma simulation method, and it provides a powerful and unified approach for the study of plasma physics.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3