Malaria Parasite Detection in Microscopic Blood Smear Images using Deep Learning Approach

Author:

Dr. M. Praneesh ,Sai Krishna P K ,Febina. N ,Ashwanth.V

Abstract

Malaria remains a significant global health concern, posing formidable challenges to healthcare systems. Conventional diagnostic methods rely on manual examination of blood smears under a microscope, a process prone to inefficiencies and subjectivity. Despite prior attempts to leverage Deep Learning algorithms for malaria diagnosis, practical performance has often fallen short. This paper presents a novel machine learning model centred on Convolutional Neural Networks (CNNs) designed to automate the classification and prediction of infected cells in thin blood smears on standard microscope slides. Through rigorous ten-fold cross-validation with 27,558 single-cell images. This paper reviews various image processing techniques employed for the detection of malaria infection in humans, presenting a comparative analysis of these methods

Publisher

Technoscience Academy

Reference27 articles.

1. Ahmed elmubarak Bashir ,et.al., Detection Of Malarial Parasites Using Digital Image Processing, International Conference on Communication, Control, Computing and Electronics Engineering(ICCCCEE),2017.

2. Ashwini Awchite et.al., A Survey on Detection of Malarial Parasites in Blood Using Image Processing, International Journal Of Innovative Research in Computer and Communication Engineering, vol.1 No.1 pp. 1096-1100, October 2011.

3. Akshay Y et.al. ,Detection of malaria parasites in blood using image processing, International Journal of Advanced Engineering and Research Development Department of Computer Science & Engineering, vol.4,pp.124-126, April 2011.

4. S. S. Savkare Moze, et.al, Automatic detection of malaria parasites for estimating parasitemia, ICASSP, vol 5, April 2013.

5. Pallavi T. Suradkar, Detection of malarial parasites in blood smear using image processing,International Journal Of Engineering and Innovative technology ,vol 2,April-2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3