Impact and Challenges of Data Mining : A Comprehensive Analysis

Author:

Chandrakant D. Prajapati ,Asha K. Patel ,Dr. Krupa J. Bhavsar

Abstract

This review paper provides a concise overview of Data Mining, a multidisciplinary field focused on extracting valuable insights and patterns from extensive datasets. It highlights the use of statistical analysis, machine learning, and pattern recognition techniques to discover hidden relationships and trends within data. The paper emphasizes data mining's significance as a powerful technology that extracts predictive information from large databases, enabling businesses to prioritize crucial data. It showcases how data mining tools predict future trends, empowering proactive, knowledge-driven decision-making. Furthermore, it discusses the superiority of data mining over retrospective tools, offering automated, prospective analyses to resolve complex business questions efficiently. It uncovers hidden patterns and predictive information beyond human expectations. The core concepts of data mining encountered challenges, data analysis techniques, and their profound impact on various domains are also addressed in this paper. The proposed paper offers a comprehensive overview of data mining's importance, applications, and transformative potential in modern data-driven decision-making processes.

Publisher

Technoscience Academy

Reference16 articles.

1. Tan, P. N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. Pearson Education India.

2. Larose, D. T. (2005). An introduction to data mining. Traduction et adaptation de Thierry Vallaud.

3. Phyu, T. N. (2009, March). Survey of classification techniques in data mining. In Proceedings of the international multiconference of Engineers and computer scientists (Vol. 1, No. 5, pp. 727-731). Citeseer.

4. Nikam, S. S. (2015). A comparative study of classification techniques in data mining algorithms. Oriental Journal of Computer Science and Technology, 8(1), 13-19.

5. Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied artificial intelligence, 17(5-6), 375-381.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3