Statistics of the earthquakes in the central Himalaya and its vicinity in last 56 years, with an emphasis in the 25 April 2015 Gorkha, Nepal earthquake

Author:

TIWARI Ram Krishna,PAUDYAL Harihar

Abstract

To understand the variation of stress levels in the region 80°E – 89°E and 26°N – 31°N, the statistical analysis of earthquake frequency-magnitude distribution and spatio-temporal variation of fractal correlation dimension of earthquake epicenter distribution are estimated. The analysis is carried out on declusterised catalogue containing 1185 events of 56 years from February 1964 to November 2020. The study area is divided into three regions the western Nepal and vicinity (Region A), central Nepal and vicinity (Region B) and eastern Nepal and vicinity (Region C), respectively. The magnitude of completeness (Mc) varies from 3.6 to 4.0 for the study period. The spatial fractal dimension (Dc) and b-value are calculated as 1.89 ± 0.02 and 0.68 ± 0.03 for the western Nepal, 1.76 ± 0.01 and 0.60 ± 0.05 for the central Nepal, whereas they are estimated as 1.85 ± 0.02 and 0.63 ± 0.03 for the eastern part of the Nepal. The b-values obtained for all three regions are very low comparing to global average value of 1. The time clustering of the events in the respective regions are 0.26 ± 0.003, 0.31 ± 0.004 and 0.26 ± 0.02 as indicated by temporal fractal dimension (Dt). The higher Dc, lower b and Dt values associated with the regions indicate high stress concentration and stronger epicenter clustering in these regions. The strongly increasing trend of fractal dimension and strongly decreasing trend of b-value show the high probabilities of occurring the large earthquake in both central Nepal (82.5°E – 85.5°E and 27.5°N – 30°N) and eastern Nepal (85.5°E – 88.2°E and 26.45°N – 28.6°N) as compared to western Nepal (80°E – 82.5°E and 28°N – 30.5°N). This statistical analysis of spatial and temporal characteristics of the earthquake activity may give significant signs of the future seismic hazard along central Himalaya region.

Publisher

Central Library of the Slovak Academy of Sciences

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3