Measurement of Resistance Exercise Force Expression

Author:

Chiu Loren Z.F.1,Schilling Brian K.2,Fry Andrew C.2,Weiss Lawrence W.2

Affiliation:

1. 1University of Southern California

2. 2University of Memphis

Abstract

Displacement-based measurement systems are becoming increasingly popular for assessment of force expression variables during resistance exercise. Typically a linear position transducer (LPT) is attached to the barbell to measure displacement and a double differentiation technique is used to determine acceleration. Force is calculated as the product of mass and acceleration. Despite the apparent utility of these devices, validity data are scarce. To determine whether LPT can accurately estimate vertical ground reaction forces, two men and four women with moderate to extensive resistance training experience performed concentric-only (CJS) and rebound (RJS) jump squats, two sessions of each type in random order. CJS or RJS were performed with 30%, 50%, and 70% one-repetition maximum parallel back squat 5 minutes following a warm-up and again after a 10-min rest. Displacement was measured via LPT and acceleration was calculated using the finite-difference technique. Force was estimated from the weight of the lifter-barbell system and propulsion force from the lifter-barbell system. Vertical ground reaction force was directly measured with a single-component force platform. Two-way random average-measure intraclass correlations (ICC) were used to assess the reliability of obtained measures and compare the measurements obtained via each method. High reliability (ICC > 0.70) was found for all CJS variables across the load-spectrum. RJS variables also had high ICC except for time parameters for early force production. All variables were significantly (p< 0.01) related between LPT and force platform methods with no indication of systematic bias. The LPT appears to be a valid method of assessing force under these experimental conditions.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3