The Effects of Speed and Surface Compliance on Shock Attenuation Characteristics for Male and Female Runners

Author:

Dufek Janet S.1,Mercer John A.1,Griffin Janet R.2

Affiliation:

1. 1University of NevadaLas Vegas

2. 2Adidas Innovation and Research Test Laboratory

Abstract

The purpose of the study was to examine the effects of running speed and surface compliance on shock attenuation (SA) characteristics for male and female runners. We were also interested in identifying possible kinematic explanations, specifically, kinematics of the lower extremity at foot-ground contact, for anticipated gender differences in SA. Fourteen volunteer recreational runners (7 male, 7 female) ran at preferred and slow speeds on an adjustable bed treadmill, which simulated soft, medium, and hard surface conditions. Selected kinematic descriptors of lower extremity kinematics as well as leg and head peak impact acceleration values were obtained for 10 left leg contacts per subject-condition. Results identified significant SA values between genders across conditions and more specifically, across surfaces for females, with male runners demonstrating a similar trend. Regression modeling to predict SA by gender for surface conditions elicited unremarkable results, ranging from 30.9 to 59.9% explained variance. It appears that surface compliance does affect SA during running; however, the runner’s ability to dissipate the shock wave may not be expressly explained by our definition of lower extremity kinematics at contact.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3