Quantifying Functional Ankle Rehabilitation Progression Criteria Using GPS: A Preliminary Study

Author:

Greig Matt,Emmerson Hannah,McCreadie John

Abstract

Context: Contemporary developments in Global Positioning System (GPS) technology present a means of quantifying mechanical loading in a clinical environment with high ecological validity. However, applications to date have typically focused on performance rather than rehabilitation. Objective: To examine the efficacy of GPS microtechnology in quantifying the progression of loading during functional rehabilitation from ankle sprain injury, given the prevalence of reinjury and need for quantifiable monitoring. Furthermore, to examine the influence of unit placement on the clinical interpretation of loading during specific functional rehabilitation drills. Design: Repeated measures. Setting: University athletic facilities. Participants: Twenty-two female intermittent team sports players. Intervention: All players completed a battery of 5 drills (anterior hop, inversion hop, eversion hop, diagonal hop, and diagonal hurdle hop) designed to reflect the mechanism of ankle sprain injury, and progress functional challenge and loading. Main Outcome Measures: GPS-mounted accelerometers quantified uniaxial PlayerLoad for each drill, with units placed at C7 and the tibia. Main effects for drill type and GPS location were investigated. Results: There was a significant main effect for drill type (P < .001) in the mediolateral (η2 = .436), anteroposterior (η2 = .480), and vertical planes (η2 = .516). The diagonal hurdle hop elicited significantly greater load than all other drills, highlighting a nonlinear progression of load. Only the mediolateral load showed evidence of progressive increase in loading. PlayerLoad was significantly greater at the tibia than at C7 for all drills, and in all planes (P < .001, η2 ≥ .662). Furthermore, the tibia placement was more sensitive to between-drill changes in mediolateral load than the C7 placement. Conclusions: The placement of the GPS unit is imperative to clinical interpretation, with both magnitude and sensitivity influenced by the unit location. GPS does provide efficacy in quantifying multiplanar loading during (p)rehabilitation, in a field or clinical setting, with potential in extending GPS analyses (beyond performance metrics) to functional injury rehabilitation and prevention.

Publisher

Human Kinetics

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3