Characterizing ActiGraph’s Idle Sleep Mode in Free-Living Assessments of Physical Behavior

Author:

LaMunion Samuel R.1ORCID,Brychta Robert J.1ORCID,Freeman Joshua R.2ORCID,Saint-Maurice Pedro F.23ORCID,Matthews Charles E.2ORCID,Ishihara Asuka1ORCID,Chen Kong Y.1ORCID

Affiliation:

1. Energy Metabolism Section, National Institute of Diabetes, Digestive and Kidney Diseases, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health (NIH), Bethesda, MD, USA

2. Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA

3. Champalimaud Foundation, Lisbon, Portugal

Abstract

ActiGraph’s idle sleep mode (ISM) is an optional battery- and memory-conserving feature believed to engage during periods of nonwear, inactivity, and sleep, but it has not been well studied in free-living environments. Thus, we investigated ISM during a 7-day assessment in a nationally representative sample of 13,649 participants (6–80 years) in the United States and found it engaged 43.6% ± 0.2% (mean ± SE) of the 24 hr per day. ISM engagement was highest (78.4% ± 0.2%) during early morning (00:00–05:59) and lowest (20.4% ± 0.3%) during afternoon (12:00–17:59), corresponding to quadrants of lowest and highest of movement, respectively. ISM engagement was also inversely correlated with daily activity across all participants (R = −.72, p < .001). When restricted to participants averaging ≥21 hr per day of wear (N = 10,482), ISM still engaged 39.5% ± 0.2% of the day and inversely correlated to daily activity (R = −.58, p < .001). These results suggest ISM engages in activity level-dependent temporal patterns. Additional research is needed to better inform analyses and interpretation of ISM-enabled data including whether it is appropriate to process them with existing methods that were developed and validated using data without ISM enabled. This issue may be particularly relevant for methods used to detect and score sleep, as ISM engaged during a substantial portion of the typical overnight sleep period in the 8-hr window between ≥22:00 and <06:00 (74.0% ± 12.6%, mean ± SD).

Publisher

Human Kinetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3