Time-Trial Performance in Elite Speed Skaters After Remote Ischemic Preconditioning

Author:

Richard Philippe,Billaut François

Abstract

Purpose: Speed skating leads to blood-flow restriction and deoxygenation in the lower limbs (especially the right leg) that may affect performance. Although the acute influence of such deoxygenation is not clearly understood, the authors tested whether remote ischemic preconditioning (RIPC) could modify muscular oxygenation and improve time-trial performance in that sport. Methods: Using a randomized, single-blind, placebo-controlled, crossover design, 9 elite speed skaters performed 1000-m on-ice time trials preceded by either RIPC of the upper limbs (3 × 5-min compression/5-min reperfusion cycles at 30 mm Hg >arterial systolic pressure) or placebo treatment (SHAM; 10 mm Hg). Changes in tissue saturation index, oxyhemoglobin–oxymyoglobin, deoxyhemoglobin–deoxymyoglobin, and total hemoglobin–myoglobin in the right vastus lateralis muscle were monitored using near-infrared spectroscopy (NIRS). Differences between RIPC and SHAM were analyzed using Cohen effect size (ES) ± 90% confidence limits and magnitude-based inferences. Results: Compared with SHAM, RIPC had a negligible effect on performance and NIRS variables. However, in a subgroup of sprinters (n = 5), RIPC likely lowered tissue saturation index at the beginning of the time trial (−6.1%; ES = −0.65) and likely increased deoxyhemoglobin–deoxymyoglobin at the beginning (3%; ES = 0.39), middle (2.9%; ES = 0.37), and end of the trial (−2.1%; ES = 0.27). In the middle section of the trial, these metabolic changes were concomitant with a possible increase in total hemoglobin–myoglobin. Conclusion: RIPC has no practical ergogenic impact on 1000-m long-track speed-skating performance in elite athletes. The relevance of using RIPC during training to increase physiological stress in sprinters particularly deserves further investigation.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3