MODELLING TECHNOLOGICAL BIAS AND PRODUCTIVITY GROWTH: A CASE STUDY OF CHINA’S THREE URBAN AGGLOMERATIONS

Author:

Li Ke1,Qu Jianying2,Wei Pan1,Ai Hongshan3,Jia Pinrong4

Affiliation:

1. Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education of China), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. China

2. Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education of China), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. Chin

3. School of Economy and Trade, Hunan University, Changsha, Hunan 410082, China

4. Beijing Research Center for Science of Science, Beijing 100054, China

Abstract

The technological progress in favor of energy conservation and emission reduction will help increase green total factor productivity and thus mitigate China’s environmental problems. This study adopts the data envelopment analysis (DEA) to measure the total factor productivity (TFP) index of the Chinese three urban agglomerations from 2005 to 2014, and the reasons for its changes are also analyzed. Furthermore, the biases of technological progress from two perspectives of inputs and outputs (including the undersirable output, measured by CO2 emissions) are estimated. Main results are: (i) During the sample period, the TFP of the three urban agglomerations continues to increase, and the main driving force is technological change. (ii) From the perspective of inputs, the Beijing-Tianjin-Hebei prefers to use electricity, whereas the Pearl River Delta and the Yangtze River Delta urban agglomerations tend to use capital and save labor. (iii) From the perspective of outputs, the technological progress of the three major urban agglomerations is significantly biased toward GDP with a slight difference among the three urban agglomerations, which means its technological progress is conducive to reduce CO2 intensity, symbolizing low carbon development. From this point of view, their economic growth shows a low-carbon trend.

Publisher

Vilnius Gediminas Technical University

Subject

Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3