PRACTICAL METHOD TO SOLVE LARGE LEAST SQUARES PROBLEMS USING CHOLESKY DECOMPOSITION

Author:

Younis Ghadi1

Affiliation:

1. Surveying & Geomatics Engineering, Palestine Polytechnic University, Wad-Alharia, Hebron, Palestine

Abstract

In Geomatics, the method of least squares is commonly used to solve the systems of observation equations for a given number of unknowns. This method is basically implemented in case of having number observations larger than the number of unknowns. Implementing the large least squares problems would require a large storage on the hard drive to store the different matrices for applying the solution. The computational time for solution would extremely increase with increasing number of unknowns and observations. The calculation of the inverse of the normal equation matrix will get more complex using the traditional methods with higher numbers of unknowns. Here, practical methods to eliminate the required storage and computations times during the solution are introduced. The Cholesky decomposition will be used to solve the systems of equations in order to avoid the complexity of the matrix inversion and to guarantee faster solutions. A block matrix implementation of Cholesky decomposition is to be used to enable the management of the memory and its limitations through the solutions. The principle of threading, which is supported in most of the programming languages like C++ or Java, is implemented to use the computer resources especially all available central processing units (CPU). This principle can be implemented over networks of computers to use of the resources of more available computers working under common servers.

Publisher

Vilnius Gediminas Technical University

Subject

General Earth and Planetary Sciences

Reference23 articles.

1. The Cholesky method for interval data

2. Fang, H.; O'Leary, D. 2006. Modified Cholesky algorithms: a catalog with new approaches. Maryland: University of Maryland.

3. Ionospheric mapping by regional spherical harmonic analysis: New developments

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-way ANOVA by using Cholesky decomposition and graphical representation;Hacettepe Journal of Mathematics and Statistics;2022-12-31

2. The Integration of GNSS/Leveling Data with Global Geopotential Models to Define the Height Reference System of Palestine;Arabian Journal for Science and Engineering;2017-11-06

3. IMPACT OF MATRIX INVERSION ON THE COMPLEXITY OF THE FINITE ELEMENT METHOD;Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport;2016-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3