SUSTAINABLE ECONOMY INSPIRED LARGE-SCALE FEED-FORWARD PORTFOLIO CONSTRUCTION

Author:

Raudys Šarūnas1,Raudys Aistis1,Pabarškaitė Židrina1

Affiliation:

1. Faculty of Mathematics and Informatics, Vilnius University, Naugarduko g. 24, 03225 Vilnius, Lithuania

Abstract

To understand large-scale portfolio construction tasks we analyse sustainable economy problems by splitting up large tasks into smaller ones and offer an evolutional feed-forward system-based approach. The theoretical justification for our solution is based on multivariate statistical analysis of multidimensional investment tasks, particularly on relations between data size, algorithm complexity and portfolio efficacy. To reduce the dimensionality/sample size problem, a larger task is broken down into smaller parts by means of item similarity – clustering. Similar problems are given to smaller groups to solve. Groups, however, vary in many aspects. Pseudo randomly-formed groups compose a large number of modules of feed-forward decision-making systems. The evolution mechanism forms collections of the best modules for each single short time period. Final solutions are carried forward to the global scale where a collection of the best modules is chosen using a multiclass cost-sensitive perceptron. Collected modules are combined in a final solution in an equally weighted approach (1/N Portfolio). The efficacy of the novel decision-making approach was demonstrated through a financial portfolio optimization problem, which yielded adequate amounts of real world data. For portfolio construction, we used 11,730 simulated trading robot performances. The dataset covered the period from 2003 to 2012 when environmental changes were frequent and largely unpredictable. Walk-forward and out-of-sample experiments show that an approach based on sustainable economy principles outperforms benchmark methods and that shorter agent training history demonstrates better results in periods of a changing environment.

Publisher

Vilnius Gediminas Technical University

Subject

Finance

Reference27 articles.

1. Aldridge, I. 2010.High-frequency trading: a practical guide to algorithmic strategies and trading systems. Hoboken, New Jersey: John Wiley & Sons. 354 p.

2. On the Markowitz mean–variance analysis of self-financing portfolios

3. Sparse and stable Markowitz portfolios

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3