Lifetime measurements of yrast states in $$^{\mathbf {178}}$$Pt using the charge plunger method with a recoil separator
-
Published:2021-04
Issue:4
Volume:57
Page:
-
ISSN:1434-6001
-
Container-title:The European Physical Journal A
-
language:en
-
Short-container-title:Eur. Phys. J. A
Author:
Heery J.ORCID, Barber L., Vilhena J., Singh B. S. Nara, Herzberg R.-D., Cullen D. M., Müller-Gatermann C., Beeton G., Bowry M., Dewald A., Grahn T., Greenlees P. T., Illana A., Julin R., Juutinen S., Keatings J. M., Leino M., Luoma M., O’Donnell D., Ojala J., Pakarinen J., Rahkila P., Ruotsalainen P., Sandzelius M., Sarén J., Sinclair J., Smith J. F., Sorri J., Spagnoletti P., Tann H., Uusitalo J., Zimba G.
Abstract
AbstractLifetime measurements in $$^{178}$$
178
Pt with excited states de-exciting through $$\gamma $$
γ
-ray transitions and internal electron conversions have been performed. Ionic charges were selected by the in-flight mass separator MARA and measured at the focal plane in coincidence with the $$4_1^+\rightarrow 2_1^+$$
4
1
+
→
2
1
+
$$257\,$$
257
keV $$\gamma $$
γ
-ray transition detected using the JUROGAM 3 spectrometer. The resulting charge-state distributions were analysed using the differential decay curve method (DDCM) framework to obtain a lifetime value of 430(20) ps for the $$2_1^+$$
2
1
+
state. This work builds on a method that combines the charge plunger technique with the DDCM analysis. As an alternative analysis, ions were selected in coincidence with the $$^{178}$$
178
Pt alpha decay ($$E_{\mathrm {alpha}} = 5.458(5)$$
E
alpha
=
5.458
(
5
)
MeV) at the focal plane. Lifetime information was obtained by fitting a two-state Bateman equation to the decay curve with the lifetime of individual states defined by a single quadrupole moment. This yielded a lifetime value of 430(50) ps for the $$2_1^+$$
2
1
+
state, and 54(6) ps for the $$4_1^+$$
4
1
+
state. An analysis method based around the Bateman equation will become especially important when using the charge plunger method for the cases where utilising coincidences between prompt $$\gamma $$
γ
rays and recoils is not feasible.
Funder
Science and Technology Facilities Council Seventh Framework Programme Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference32 articles.
1. K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011). https://doi.org/10.1103/RevModPhys.83.1467 2. D.S. Delion, R. Wyss, R.J. Liotta, B. Cederwall, A. Johnson, M. Sandzelius, Phys. Rev. C 82, 024307 (2010). https://doi.org/10.1103/PhysRevC.82.024307 3. C. Forssén, R. Roth, P. Navrátil, J. Phys. G: Nucl. Part. Phys. 40(5), 055105 (2013). https://doi.org/10.1088/0954-3899/40/5/055105 4. M. Ciemała, S. Ziliani, F.C.L. Crespi, S. Leoni, B. Fornal, A. Maj et al., Phys. Rev. C 101, 021303 (2020). https://doi.org/10.1103/PhysRevC.101.021303 5. P.J. Nolan, J.F. Sharpey-Schafer, Rep. Progress Phys. 42(1), 1 (1979). https://doi.org/10.1088/0034-4885/42/1/001
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Energy response and fast timing characteristics of 1.5′′ x 1.5′′ CeBr3 scintillator;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2021-10
|
|