Thermodynamics conditions of matter in the neutrino decoupling region during neutron star mergers

Author:

Endrizzi Andrea,Perego Albino,Fabbri Francesco M.,Branca Lorenzo,Radice David,Bernuzzi Sebastiano,Giacomazzo Bruno,Pederiva Francesco,Lovato Alessandro

Abstract

AbstractIn this work we investigate the thermodynamics conditions at which neutrinos decouple from matter in neutron star merger remnants by post-processing results of merger simulations. We find that the matter density and the neutrino energies are the most relevant quantities in determining the decoupling surface location. For mean energy neutrinos ($$\sim $$ 9, 15 and 24 MeV for $$\nu _e$$νe, $$\bar{\nu }_e$$ν¯e and $$\nu _{\mu ,\tau }$$νμ,τ, respectively) the transition between diffusion and free-streaming conditions occurs around $$10^{11}\mathrm{g}~\mathrm{cm}^{-3}$$1011gcm-3 for all neutrino species. Weak and thermal equilibrium freeze-out occurs deeper (several $$10^{12}\mathrm{g}~\mathrm{cm}^{-3}$$1012gcm-3) for heavy-flavor neutrinos than for $$\bar{\nu }_e$$ν¯e and $$\nu _e$$νe ($$\gtrsim 10^{11}\mathrm{g}~\mathrm{cm}^{-3}$$1011gcm-3). Decoupling temperatures are broadly in agreement with the average neutrino energies, with softer equations of state characterized by $$\sim $$1 MeV larger decoupling temperatures. Neutrinos streaming at infinity with different energies come from different remnant parts. While low-energy neutrinos ($$ \sim 3~\mathrm{MeV}$$3MeV) decouple at $$ \rho \sim 10^{13}\mathrm{g}~\mathrm{cm}^{-3}$$ρ1013gcm-3, $$T \sim 10~\mathrm{MeV}$$T10MeV and $$Y_e \lesssim 0.1$$Ye0.1 close to weak equilibrium, high-energy ones ($$ \sim 50~\mathrm{MeV}$$50MeV) decouple from the disk at $$\rho \sim 10^{9}\mathrm{g}~\mathrm{cm}^{-3}$$ρ109gcm-3, $$T \sim 2~\mathrm{MeV}$$T2MeV and $$Y_e \gtrsim 0.25$$Ye0.25. The presence of a massive NS or a BH influences the neutrino thermalization. While in the former case decoupling surfaces are present for all relevant energies, the lower maximum density ($$\lesssim 10^{12}\mathrm{g}~\mathrm{cm}^{-3}$$1012gcm-3) in BH-torus systems does not allow softer neutrinos to thermalize and diffuse.

Funder

Friedrich-Schiller-Universität Jena

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3