Abstract
AbstractWe study in detail the nuclear aspects of a neutron-star merger in which deconfinement to quark matter takes place. For this purpose, we make use of the Chiral Mean Field (CMF) model, an effective relativistic model that includes self-consistent chiral symmetry restoration and deconfinement to quark matter and, for this reason, predicts the existence of different degrees of freedom depending on the local density/chemical potential and temperature. We then use the out-of-chemical-equilibrium finite-temperature CMF equation of state in full general-relativistic simulations to analyze which regions of different QCD phase diagrams are probed and which conditions, such as strangeness and entropy, are generated when a strong first-order phase transition appears. We also investigate the amount of electrons present in different stages of the merger and discuss how far from chemical equilibrium they can be and, finally, draw some comparisons with matter created in supernova explosions and heavy-ion collisions.
Funder
European Cooperation in Science and Technology
Helmholtz International Center for FAIR
Horizon 2020 Framework Programme
H2020 European Research Council
NSF
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献