Spatial organization of connectivity in functional climate networks describing event synchrony of heavy precipitation

Author:

Wolf Frederik,Donner Reik V.

Abstract

AbstractIn the past years, there has been an increasing number of applications of functional climate networks to studying the spatio-temporal organization of heavy rainfall events or similar types of extreme behavior in some climate variable of interest. Nearly all existing studies have employed the concept of event synchronization (ES) to statistically measure similarity in the timing of events at different grid points. Recently, it has been pointed out that this measure can however lead to biases in the presence of events that are heavily clustered in time. Here, we present an analysis of the effects of event declustering on the resulting functional climate network properties describing spatio-temporal patterns of heavy rainfall events during the South American monsoon season based on ES and a conceptually similar method, event coincidence analysis (ECA). As examples for widely employed local (per-node) network characteristics of different type, we study the degree, local clustering coefficient and average link distance patterns, as well as their mutual interdependency, for three different values of the link density. Our results demonstrate that the link density can markedly affect the resulting spatial patterns. Specifically, we find the qualitative inversion of the degree pattern with rising link density in one of the studied settings. To our best knowledge, such crossover behavior has not been described before in event synchrony based networks. In addition, declustering relieves differences between ES and ECA based network properties in some measures while not in others. This underlines the need for a careful choice of the methodological settings in functional climate network studies of extreme events and associated interpretation of the obtained results, especially when higher-order network properties are considered.

Funder

Potsdam-Institut für Klimafolgenforschung (PIK) e.V.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3