Updates on the determination of $$\vert V_{cb} \vert ,$$ $$R(D^{*})$$ and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$

Author:

Martinelli G.,Simula S.,Vittorio L.

Abstract

AbstractWe present an updated determination of the values of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^*)$$ R ( D ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb | based on the new data on semileptonic $$B \rightarrow D^* \ell \nu _\ell $$ B D ν decays by the Belle and Belle-II Collaborations and on the recent theoretical progress in the calculation of the form factors relevant for semileptonic $$B \rightarrow D^* \ell \nu _\ell $$ B D ν and $$B_s \rightarrow K \ell \nu _\ell $$ B s K ν decays. In particular we present results derived by applying either the Dispersive Matrix (DM) method of Di Carlo et al. (Phys Rev D 104:054502, 2021), Martinelli et al. (Phys Rev D 104:094512, 2021), Martinelli et al. (Phys Rev D 105:034503, 2022), Martinelli et al. (Eur Phys J C 82:1083, 2022), Martinelli et al. (JHEP 08:022, 2022) and Martinelli et al. (Phys Rev D 106:093002, 2022) or the more standard Boyd–Grinstein–Lebed (BGL) (Boyd et al. in Phys Rev D 56:6895, 1997) approach to the most recent values of the form factors determined in lattice QCD. Using all the available lattice results for the form factors from the DM method we get the theoretical value $$R^{\textrm{th}}(D^*) = 0.262 \pm 0.009$$ R th ( D ) = 0.262 ± 0.009 and we extract from a bin-per-bin analysis of the experimental data the value $$\vert V_{cb} \vert = (39.92 \pm 0.64) \cdot 10^{-3}.$$ | V cb | = ( 39.92 ± 0.64 ) · 10 - 3 . Our result for $$R(D^*)$$ R ( D ) is consistent with the latest experimental world average $$R^{\textrm{exp}}(D^*) = 0.284 \pm 0.012$$ R exp ( D ) = 0.284 ± 0.012 (HFLAV Collaboration in Preliminary average of R(D) and $$R(D^*)$$ R ( D ) as for Summer 2023. See https://hflav-eos.web.cern.ch/hflav-eos/semi/summer23/html/RDsDsstar/RDRDs.html) at the $$\simeq 1.5\,\sigma $$ 1.5 σ level. Our value for $$\vert V_{cb} \vert $$ | V cb | is compatible with the latest inclusive determinations $$\vert V_{cb} \vert ^{\textrm{incl}} = (41.97 \pm 0.48) \cdot 10^{-3}$$ | V cb | incl = ( 41.97 ± 0.48 ) · 10 - 3 (Finauri and Gambino in The $$q^2$$ q 2 moments in inclusive semileptonic B decays. arXiv:2310.20324) and $$\vert V_{cb} \vert ^{\textrm{incl}} = (41.69\pm 0.63) \cdot 10^{-3}$$ | V cb | incl = ( 41.69 ± 0.63 ) · 10 - 3 (Bernlochner et al. in JHEP 10:068, 2022) within $$\simeq 2.6$$ 2.6 and $$\simeq 2.0$$ 2.0 standard deviations, respectively. From a reappraisal of the calculations of $$\vert V_{ub} \vert / \vert V_{cb} \vert ,$$ | V ub | / | V cb | , we also obtain $$\vert V_{ub} \vert / \vert V_{cb} \vert = 0.087\pm 0.009$$ | V ub | / | V cb | = 0.087 ± 0.009 in good agreement with the result $$\vert V_{ub} \vert / \vert V_{cb} \vert = 0.0844\pm 0.0056$$ | V ub | / | V cb | = 0.0844 ± 0.0056 from the latest FLAG review (Flavour Lattice Averaging Group (FLAG) Collaboration in Phys J C 82:869, 2022).

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3