Constructing model-agnostic likelihoods, a method for the reinterpretation of particle physics results

Author:

Gärtner LorenzORCID,Hartmann NikolaiORCID,Heinrich LukasORCID,Horstmann MalinORCID,Kuhr ThomasORCID,Reboud MérilORCID,Stefkova SlavomiraORCID,van Dyk DannyORCID

Abstract

AbstractExperimental High Energy Physics has entered an era of precision measurements. However, measurements of many of the accessible processes assume that the final states’ underlying kinematic distribution is the same as the Standard Model prediction. This assumption introduces an implicit model-dependency into the measurement, rendering the reinterpretation of the experimental analysis complicated without reanalysing the underlying data. We present a novel reweighting method in order to perform reinterpretation of particle physics measurements. It makes use of reweighting the Standard Model templates according to kinematic signal distributions of alternative theoretical models, prior to performing the statistical analysis. The generality of this method allows us to perform statistical inference in the space of theoretical parameters, assuming different kinematic distributions, according to a beyond Standard Model prediction. We implement our method as an extension to the software and interface it with the software, which allows us to perform flavor physics phenomenology studies. Furthermore, we argue that, beyond the or likelihood specification, only minimal information is necessary to make a likelihood model-agnostic and hence easily reinterpretable. We showcase that publishing such likelihoods is crucial for a full exploitation of experimental results.

Funder

Deutsche Forschungsgemeinschaft

UK Science and Technology Facilities Council

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. K. Cranmer et al., SciPost Phys. 12, 037 (2022). https://doi.org/10.21468/SciPostPhys.12.1.037. arXiv:2109.04981 [hep-ph]

2. S. Bailey et al., Data and analysis preservation, recasting, and reinterpretation (2022). Contribution to the Snowmass process. arXiv:2203.10057 [hep-ph]. https://inspirehep.net/literature/2054747

3. G. Stark, C.A. Ots, M. Hance (2023). arXiv:2306.11055 [hep-ex] https://inspirehep.net/literature/2669860

4. W. Abdallah et al., LHC reinterpretation forum. SciPost Phys. 9, 022 (2020). https://doi.org/10.21468/SciPostPhys.9.2.022. arXiv:2003.07868 [hep-ph]

5. D. Dercks, N. Desai, J.S. Kim, K. Rolbiecki, J. Tattersall, T. Weber, Comput. Phys. Commun. 221, 383 (2017). https://doi.org/10.1016/j.cpc.2017.08.021. arXiv:1611.09856 [hep-ph]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3