Combining lattice QCD and phenomenological inputs on generalised parton distributions at moderate skewness

Author:

Riberdy Michael JosephORCID,Dutrieux HervéORCID,Mezrag CédricORCID,Sznajder PawełORCID

Abstract

AbstractWe present a systematic study demonstrating the impact of lattice QCD data on the extraction of generalised parton distributions (GPDs). For this purpose, we use a previously developed modelling of GPDs based on machine learning techniques fulfilling the theoretical requirements of polynomiality, a form of positivity constraint and known reduction limits. A special care is given to estimate the uncertainty stemming from the ill-posed character of the connection between GPDs and the experimental processes usually considered to constrain them, like deeply virtual Compton scattering (DVCS). Moke lattice QCD data inputs are included in a Bayesian framework to a prior model based on an Artificial Neural Network. This prior model is fitted to reproduce the most experimentally accessible information of a phenomenological extraction by Goloskokov and Kroll. We highlight the impact of the precision, correlation and kinematic coverage of lattice data on GPD extraction at moderate $$\xi $$ ξ which has only been brushed in the literature so far, paving the way for a joint extraction of GPDs.

Funder

Agence Nationale de la Recherche

Basic Energy Sciences

Gordon and Betty Moore Foundation

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3