Neutrino oscillations in matter using the adjugate of the Hamiltonian

Author:

Abdullahi AsliORCID,Parke Stephen J.ORCID

Abstract

AbstractWe revisit neutrino oscillations in constant matter density for a number of different scenarios: three flavors with the standard Wolfenstein matter potential, four flavors with standard matter potential and three flavors with non-standard matter potentials. To calculate the oscillation probabilities for these scenarios one must determine the eigenvalues and eigenvectors of the Hamiltonians. We use a method for calculating the eigenvalues that is well known, determination of the zeros of determinant of matrix $$(\lambda I -H)$$ ( λ I - H ) , where H is the Hamiltonian, I the identity matrix and $$\lambda $$ λ is a scalar. To calculate the associated eigenvectors we use a method that is little known in the particle physics community, the calculation of the adjugate (transpose of the cofactor matrix) of the same matrix, $$(\lambda I -H)$$ ( λ I - H ) . This method can be applied to any Hamiltonian, but provides a very simple way to determine the eigenvectors for neutrino oscillation in matter, independent of the complexity of the matter potential. This method can be trivially automated using the Faddeev–LeVerrier algorithm for numerical calculations. For the above scenarios we derive a number of quantities that are invariant of the matter potential, many are new such as the generalization of the Naumov–Harrison–Scott identity for four or more flavors of neutrinos. We also show how these matter potential independent quantities become matter potential dependent when off-diagonal non-standard matter effects are included.

Publisher

Springer Science and Business Media LLC

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3