Weyl–invariant scalar–tensor gravities from purely metric theories

Author:

Anastasiou Giorgos,Araya Ignacio J.,Chakraborty AvikORCID

Abstract

AbstractWe describe a method to generate scalar–tensor theories with Weyl symmetry, starting from arbitrary purely metric higher derivative gravity theories. The method consists in the definition of a conformally-invariant metric $$\hat{g}_{\mu \nu }$$ g ^ μ ν , that is a rank (0,2)-tensor constructed out of the metric tensor and the scalar field. This new object has zero conformal weight and is given by $$\phi ^{2/\Delta }g_{\mu \nu }$$ ϕ 2 / Δ g μ ν , where $$(-\Delta )$$ ( - Δ ) is the conformal dimension of the scalar. As $$g_{\mu \nu }$$ g μ ν has conformal dimension of 2, the resulting tensor is trivially a conformal invariant. Then, the generated scalar–tensor theory, which we call the Weyl uplift of the original purely metric theory, is obtained by replacing the metric by $$\hat{g}_{\mu \nu }$$ g ^ μ ν in the action that defines the original theory. This prescription allowed us to define the Weyl uplift of theories with terms of higher order in the Riemannian curvature. Furthermore, the prescription for scalar–tensor theories coming from terms that have explicit covariant derivatives in the Lagrangian is discussed. The same mechanism can also be used for the derivation of the equations of motion of the scalar–tensor theory from the original field equations in the Einstein frame. Applying this method of Weyl uplift allowed us to reproduce the known result for the conformal scalar coupling to Lovelock gravity and to derive that of Einsteinian cubic gravity. Finally, we show that the cancellation of the volume divergences in the theory given by the conformal scalar coupling to Einstein–Anti-de Sitter gravity is achieved by the Weyl uplift of the original theory augmented by counterterms, which is relevant in the framework of conformalrenormalization.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Nacional de Investigación y Desarrollo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3