Slowly rotating black holes in the novel Einstein–Maxwell-scalar theory

Author:

Qiu JianhuiORCID

Abstract

AbstractWe investigate a slowly rotating black hole solution in a novel Einstein–Maxwell-scalar theory, which is prompted by the classification of general Einstein–Maxwell-scalar theory. The gyromagnetic ratio of this black hole is calculated, and it increases as the second free parameter $$\beta $$ β increases, but decreases with the increasing parameter $$\gamma \equiv \frac{2 \alpha ^{2}}{1+\alpha ^2}$$ γ 2 α 2 1 + α 2 . In the Einstein–Maxwell-dilaton (EMD) theory, the parameter $$\beta $$ β vanishes but the free parameter $$\alpha $$ α governing the strength of the coupling between the dilaton and the Maxwell field remains. The gyromagnetic ratio is always less than 2, the well-known value for a Kerr–Newman (KN) black hole as well as for a Dirac electron. Scalar hairs reduce the magnetic dipole moment in dilaton theory, resulting in a drop in the gyromagnetic ratio. However, we find that the gyromagnetic ratio of two can be realized in this Einstein–Maxwell-scalar theory by increasing $$\beta $$ β and the charge-to-mass ratio Q/M simultaneously (recall that the gyromagnetic ratio of KN black holes is independent of Q/M). The same situation also applies to the angular velocity of a locally non-rotating observer. Moreover, we analyze the period correction for circular orbits in terms of charge-to-mass ratio, as well as the correction of the radius of the innermost stable circular orbits. It is found the correction increases with $$\beta $$ β but decreases with Q/M. Finally, the total radiative efficiency is investigated, and it can vanish once the effect of rotation is considered.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3