Comparing weak- and unsupervised methods for resonant anomaly detection

Author:

Collins Jack H.,Martín-Ramiro PabloORCID,Nachman Benjamin,Shih David

Abstract

AbstractAnomaly detection techniques are growing in importance at the Large Hadron Collider (LHC), motivated by the increasing need to search for new physics in a model-agnostic way. In this work, we provide a detailed comparative study between a well-studied unsupervised method called the autoencoder (AE) and a weakly-supervised approach based on the Classification Without Labels (CWoLa) technique. We examine the ability of the two methods to identify a new physics signal at different cross sections in a fully hadronic resonance search. By construction, the AE classification performance is independent of the amount of injected signal. In contrast, the CWoLa performance improves with increasing signal abundance. When integrating these approaches with a complete background estimate, we find that the two methods have complementary sensitivity. In particular, CWoLa is effective at finding diverse and moderately rare signals while the AE can provide sensitivity to very rare signals, but only with certain topologies. We therefore demonstrate that both techniques are complementary and can be used together for anomaly detection at the LHC.

Funder

H2020 Marie Skłodowska-Curie Actions

Agencia Estatal de Investigación

IFT Centro de Excelencia Severo Ochoa

Office of Science

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference83 articles.

1. ATLAS Collaboration, Exotic physics searches (2018). https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

2. ATLAS Collaboration, Supersymmetry searches (2018). https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

3. CMS Collaboration, Cms exotica public physics results (2018). https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

4. CMS Collaboration, Cms supersymmetry physics results (2018). https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

5. CMS Collaboration, CMS beyond-two-generations (b2g) public physics results (2018). https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly detection in collider physics via factorized observables;Physical Review D;2024-09-09

2. Unsupervised and lightly supervised learning in particle physics;The European Physical Journal Special Topics;2024-07-08

3. How deep learning is complementing deep thinking in ATLAS;The European Physical Journal Special Topics;2024-07-05

4. Cluster Scanning: a novel approach to resonance searches;Journal of High Energy Physics;2024-06-25

5. Combining resonant and tail-based anomaly detection;Physical Review D;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3