Abstract
AbstractMixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$
θ
given a set of observables $${\mathbf {x}}$$
x
. In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\theta }$$
θ
. In such situations, a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference12 articles.
1. J. Brehmer, K. Cranmer, G. Louppe, J. Pavez, Phys. Rev. D 98(5), 052004 (2018). https://doi.org/10.1103/PhysRevD.98.052004
2. F. Flesher, K. Fraser, C. Hutchison, B. Ostdiek, M.D. Schwartz, Parameter inference from event ensembles and the top-quark mass (2020)
3. A. Andreassen, S.C. Hsu, B. Nachman, N. Suaysom, A. Suresh, Phys. Rev. D 103(3), 036001 (2021). https://doi.org/10.1103/PhysRevD.103.036001
4. M. Baak, S. Gadatsch, R. Harrington, W. Verkerke, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 771, 39–48 (2015). https://doi.org/10.1016/j.nima.2014.10.033
5. K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke, HistFactory: a tool for creating statistical models for use with RooFit and RooStats. Technical Report. CERN-OPEN-2012-016, New York University, New York (2012). https://cds.cern.ch/record/1456844