Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries

Author:

Kraniotis G. V.ORCID

Abstract

AbstractWe investigate the redshift and blueshift of light emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specifically we compute the redshift and blueshift of photons that are emitted by geodesic massive particles and travel along null geodesics towards a distant observer-located at a finite distance from the KN(a)dS black hole. For this purpose we use the killing-vector formalism and the associated first integrals-constants of motion. We consider in detail stable timelike equatorial circular orbits of stars and express their corresponding redshift/blueshift in terms of the metric physical black hole parameters (angular momentum per unit mass, mass, electric charge and the cosmological constant) and the orbital radii of both the emitter star and the distant observer. These radii are linked through the constants of motion along the null geodesics followed by the photons since their emission until their detection and as a result we get closed form analytic expressions for the orbital radius of the observer in terms of the emitter radius, and the black hole parameters. In addition, we compute exact analytic expressions for the frame dragging of timelike spherical orbits in the KN(a)dS spacetime in terms of multivariable generalised hypergeometric functions of Lauricella and Appell. We apply our exact solutions of timelike non-spherical polar KN geodesics for the computation of frame-dragging, pericentre-shift, orbital period for the orbits of S2 and S14 stars within the $$1^{\prime \prime }$$ 1 of SgrA*. We solve the conditions for timelike spherical orbits in KN(a)dS and KN spacetimes. We present new, elegant compact forms for the parameters of these orbits. Last but not least we derive a very elegant and novel exact formula for the periapsis advance for a test particle in a non-spherical polar orbit in KNdS black hole spacetime in terms of Jacobi’s elliptic function sn and Lauricella’s hypergeometric function $$F_D$$ F D .

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3