Author:
Ciuffoli Emilio,Evslin Jarah,Mohammed Hosam
Abstract
AbstractIt is well known that neutrino oscillations may damp due to decoherence caused by the separation of mass eigenstate wave packets or by a baseline uncertainty of order the oscillation wave length. In this note we show that if the particles created together with the neutrino are not measured and do not interact with the environment, then the first source of decoherence is not present. This demonstration uses the saddle point approximation and also assumes that the experiment lasts longer than a certain threshold. We independently derive this result using the external wave packet model and also using a model in which the fields responsible for neutrino production and detection are treated dynamically. Intuitively this result is a consequence of the fact that the neutrino emission time does not affect the final state and so amplitudes corresponding to distinct emission times must be added coherently. This fact also implies that oscillations resulting from mass eigenstates which are detected simultaneously arise from neutrinos which were not created simultaneously but are nonetheless coherent, realizing the neutrino oscillation paradigm of Kobach, Manohar and McGreevy.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献