Abstract
AbstractWe propose an extension of the standard model with Majorana-type fermionic dark matters based on the flatland scenario where all scalar coupling constants, including scalar mass terms, vanish at the Planck scale, i.e. the scalar potential is flat above the Planck scale. This scenario could be compatible with the asymptotic safety paradigm for quantum gravity. We search the parameter space so that the model reproduces the observed values such as the Higgs mass, the electroweak vacuum and the relic abundance of dark matter. We also investigate the spin-independent elastic cross section for the Majorana fermions and a nucleon. It is shown that the Majorana fermions as dark matter candidates could be tested by dark matter direct detection experiments such as XENON, LUX and PandaX-II. We demonstrate that within the minimal setup compatible with the flatland scenario at the Planck scale or asymptotically safe quantum gravity, the extended model could have a strong predictability.
Funder
Japan Society for the Promotion of Science
Alexander von Humboldt-Stiftung
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献