Author:
Adhikari P., ,Ajaj R.,Araujo G. R.,Batygov M.,Beltran B.,Bina C. E.,Boulay M. G.,Broerman B.,Bueno J. F.,Butcher A.,Cai B.,Cárdenas-Montes M.,Cavuoti S.,Chen Y.,Cleveland B. T.,Corning J. M.,Daugherty S. J.,Di Stefano P.,Dering K.,Doria L.,Duncan F. A.,Dunford M.,Erlandson A.,Fatemighomi N.,Fiorillo G.,Flower A.,Ford R. J.,Gagnon R.,Gallacher D.,Garcés E. A.,Abia P. García,Garg S.,Giampa P.,Goeldi D.,Golovko V. V.,Gorel P.,Graham K.,Grant D. R.,Grobov A.,Hallin A. L.,Hamstra M.,Harvey P. J.,Hearns C.,Ilyasov A.,Joy A.,Jillings C. J.,Kamaev O.,Kaur G.,Kemp A.,Kochanek I.,Kuźniak M.,Langrock S.,La Zia F.,Lehnert B.,Levashko N.,Li X.,Litvinov O.,Lock J.,Longo G.,Machulin I.,Majewski P.,McDonald A. B.,McElroy T.,McGinn T.,McLaughlin J. B.,Mehdiyev R.,Mielnichuk C.,Monroe J.,Nadeau P.,Nantais C.,Ng C.,Noble A. J.,Oliviéro G.,Ouellet C.,Pal S.,Pasuthip P.,Peeters S. J. M.,Pesudo V.,Piro M.-C.,Pollmann T. R.,Rand E. T.,Rethmeier C.,Retière F.,García E. Sanchez,Sánchez-Pastor T.,Santorelli R.,Seeburn N.,Skensved P.,Smith B.,Smith N. J. T.,Sonley T.,Stainforth R.,Stone C.,Strickland V.,Stringer M.,Sur B.,Vázquez-Jáuregui E.,Veloce L.,Viel S.,Walding J.,Waqar M.,Ward M.,Westerdale S.,Willis J.,Zuñiga-Reyes A.
Abstract
AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scintillation physics, including the so-called intermediate component, (b) the time response of the TPB wavelength shifter, including delayed TPB emission at $${\mathcal {O}}$$O(ms) time-scales, and c) PMT response. TPB is the wavelength shifter of choice in most LAr detectors. We find that approximately 10% of the intensity of the wavelength-shifted light is in a long-lived state of TPB. This causes light from an event to spill into subsequent events to an extent not usually accounted for in the design and data analysis of LAr-based detectors.
Funder
H2020 European Research Council
Russian Science Foundation
International Research Agenda Programme AstroCeNT
Science and Technology Facilities Council
Ministry of Research and Innovation
Canadian Foundation for Innovation
Leverhulme Trust
Ministerio de Ciencia e Innovación
Consejo Nacional de Ciencia y Tecnología
Arthur B.McDonald Canadian Astroparticle Research Institute
Canada First Research Excellence Fund
Ministry of Advanced Education, Government of Alberta
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference38 articles.
1. G. Fiorillo. The liquid argon technology for neutrino and astroparticle detectors. In: Nuc. Phys. B Proc. Sup., Dipartimento di Scienze Fisiche Università di Napoli “Federico II” and INFN Sezione di Napoli, Italy, p 372–376 (2006)
2. C. Gary, S. Kane, M.I. Firestone, et al. Large area liquid argon detectors for interrogation systems. In Application of accelerators in research and industry: 22. International conference, AIP, (2013), p. 698–703
3. M. Agostini, M. Barnabé-Heider, D. Budjáš et al., LArGe: active background suppression using argon scintillation for the GERDA $$0\nu \beta \beta $$-experiment. EPJ C 75(10), 506 (2015). arXiv:1501.05762
4. DarkSide-50 Collaboration, P. Agnes, D. Alton, K. Arisaka, et al. DarkSide-50: A WIMP search with a two-phase argon TPC. Phys. Proc., 61:124–129, (2015)
5. DarkSide-20k Collaboration, C.E. Aalseth, F. Acerbi, P. Agnes, et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. EPJ Plus, 133:131, (2017), arXiv:1707.08145