Shadow of a Schwarzschild black hole surrounded by a Bach–Weyl ring

Author:

Wang Mingzhi,Chen Songbai,Wang Jieci,Jing Jiliang

Abstract

AbstractWe have studied the shadows of a Schwarzschild black hole surrounded by a Bach–Weyl ring through the backward ray-tracing method. The presence of Bach–Weyl ring leads to that the photon dynamical system is non-integrable and then chaos would appear in the photon motion, which affects sharply the black hole shadow. The size and shape the black hole shadow depend on the black hole parameter, the Bach–Weyl ring mass and the Weyl radius between black hole and ring. Some self-similar fractal structures also appear in the black hole shadow, which originates from the chaotic lensing. We also study the change of the image of Bach–Weyl ring with the ring mass and the Weyl radius. Finally, we analyze the invariant manifolds of Lyapunov orbits near the fixed points and discuss further the formation of the shadow of a Schwarzschild black hole with Bach–Weyl ring.

Funder

Education Department of Hunan Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference63 articles.

1. The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019)

2. The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. II. Array and instrumentation. Astrophys. J. Lett. 875, L2 (2019)

3. The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. III. Data processing and calibration. Astrophys. J. Lett. 875, L3 (2019)

4. The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875, L4 (2019)

5. The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 875, L5 (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3