Palatini quadratic gravity: spontaneous breaking of gauged scale symmetry and inflation

Author:

Ghilencea D. M.

Abstract

AbstractWe study quadratic gravity $$R^2+R_{[\mu \nu ]}^2$$ R 2 + R [ μ ν ] 2 in the Palatini formalism where the connection and the metric are independent. This action has a gauged scale symmetry (also known as Weyl gauge symmetry) of Weyl gauge field $$v_\mu = (\tilde{\Gamma }_\mu -\Gamma _\mu )/2$$ v μ = ( Γ ~ μ - Γ μ ) / 2 , with $$\tilde{\Gamma }_\mu $$ Γ ~ μ ($$\Gamma _\mu $$ Γ μ ) the trace of the Palatini (Levi-Civita) connection, respectively. The underlying geometry is non-metric due to the $$R_{[\mu \nu ]}^2$$ R [ μ ν ] 2 term acting as a gauge kinetic term for $$v_\mu $$ v μ . We show that this theory has an elegant spontaneous breaking of gauged scale symmetry and mass generation in the absence of matter, where the necessary scalar field ($$\phi $$ ϕ ) is not added ad-hoc to this purpose but is “extracted” from the $$R^2$$ R 2 term. The gauge field becomes massive by absorbing the derivative term $$\partial _\mu \ln \phi $$ μ ln ϕ of the Stueckelberg field (“dilaton”). In the broken phase one finds the Einstein–Proca action of $$v_\mu $$ v μ of mass proportional to the Planck scale $$M\sim \langle \phi \rangle $$ M ϕ , and a positive cosmological constant. Below this scale $$v_\mu $$ v μ decouples, the connection becomes Levi-Civita and metricity and Einstein gravity are recovered. These results remain valid in the presence of non-minimally coupled scalar field (Higgs-like) with Palatini connection and the potential is computed. In this case the theory gives successful inflation and a specific prediction for the tensor-to-scalar ratio $$0.007\le r\le 0.01$$ 0.007 r 0.01 for current spectral index $$n_s$$ n s (at $$95\%$$ 95 % CL) and $$N=60$$ N = 60 efolds. This value of r is mildly larger than in inflation in Weyl quadratic gravity of similar symmetry, due to different non-metricity. This establishes a connection between non-metricity and inflation predictions and enables us to test such theories by future CMB experiments.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3