A black hole toy model with non-local and boundary modes from non-trivial boundary conditions

Author:

Cheng PengORCID

Abstract

AbstractWe study gauge theories between two parallel boundaries with non-trivial boundary conditions, which serve as a toy model for black hole background with two boundaries near the horizon and infinite, aiming for a better understanding of the Bekenstein–Hawking entropy. The new set of boundary conditions allows boundary modes and non-local modes that interplay between the two boundaries. Those boundary modes and Wilson lines stretched between the two boundaries are carefully analyzed and are confirmed as physical variables in the phase space. Along with bulk fluctuation modes and topological modes, the partition function and entropy of all physical modes are evaluated via Euclidean path integral. It is shown that there are transitions between the dominance of different modes as we vary the temperature. The boundary fluctuation modes whose entropy is proportional to the volume dominate at high temperatures, and the boundary-area scaled boundary modes and Wilson lines are the more important at low temperatures. At super-low temperatures, when all the fluctuation modes die off, we see the topological modes whose entropy is the logarithm of the length scales of the system. The boundary modes and non-local modes should have their counterparts in a black hole system with similar boundary conditions, which might provide important hints for black hole physics.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circumventing the black hole hair-loss problem;Physical Review D;2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3