Bayesian inference of W-boson mass

Author:

Rallapalli Aaseesh,Desai ShantanuORCID

Abstract

AbstractWe use a Bayesian regression technique (similar to a recent analysis by Rinaldi et al.) to obtain a central estimate for the W-boson mass using four different combinations of datasets compiled by the PDG including the 2022 CDF result. We use three different priors on the unknown intrinsic scatter and also a non-parametric hierarchical Dirichlet Process Gaussian Mixture model to obtain a world average for W-boson mass. We also evaluate the statistical significance of the discrepancy with respect to the Standard model for each of the datasets. We find that for all the combination of datasets and the aformentioned prior choices, the discrepancy with respect to the Standard Model value for the W-mass is less than 3$$\sigma $$ σ . We also checked that if we use a narrow prior on the intrinsic scatter, we get a discrepancy of about 3.8$$\sigma $$ σ compared to the Standard model value.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference40 articles.

1. R.L. Workman, and Others (Particle Data Group), PTEP 2022, 083C01 (2022)

2. CDF Collaboration, T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos, G. Apollinari, J.A. Appel, T. Arisawa et al., Science 376, 170 (2022)

3. H.M. Hill, Phys. Today 75, 14 (2022)

4. S. Rinaldi, H. Middleton, W. Del Pozzo, J. Gair (2022). arXiv:2209.07416

5. S. Bethapudi, S. Desai, Eur. Phys. J. Plus 132, 78 (2017). arXiv:1701.01789

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Most frequent value analysis of distance measurements to M87;Monthly Notices of the Royal Astronomical Society;2024-08-14

2. FIGARO: hierarchical non-parametric inference for population studies;Journal of Open Source Software;2024-05-25

3. A meta-analysis of distance measurements to M87;Progress of Theoretical and Experimental Physics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3