Novel model for particle emission in small collision systems

Author:

Mihaylov DimitarORCID,González González Jaime

Abstract

AbstractCollider experiments provide an opportunity to produce particles at close distances and momenta. The measured correlation functions between particles can provide information on both the effective emission source and the interaction potential. In recent years, experiments at the LHC have shown that precision studies of the strong interaction are possible using correlation techniques, provided a good handle on the source function. The current work presents a new numerical framework called Common Emission in CATS (CECA), capable of simulating the effective emission source of an N-body system based on the properties of the single particles. The framework differentiates between primordial particle emission and particle production through resonances, allowing to verify the hypothesis proposed by the ALICE Collaboration that a common baryon–baryon emission source is present in small collision systems. The new framework is used to analyze ALICE data on $$\text{ pp }$$ pp and $$\text{ p }\Lambda $$ p Λ correlations and compare the results to previous studies based on the common emission source scenario. It is demonstrated that the best fit to the $$\text{ p }\Lambda $$ p Λ correlation data is obtained using a scattering length of $$1.15\pm 0.07$$ 1.15 ± 0.07  fm in the S = 1 channel. The new CECA framework provides an essential tool for precision studies in two-body systems and a consistent description of the source function in many-body systems.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3