Spherically symmetric distributions with an invariant and vanishing complexity factor by means of the extended geometric deformation

Author:

León P.ORCID,Las Heras C.

Abstract

AbstractIn this work, we will analyze the complexity factor, proposed by L. Herrera, of spherically symmetric static distribution through the gravitational decoupling method. Specifically, we will consider both spatial and temporal deformations of the metric function, and we will impose conditions over the complexity factor to close the system of equations. In particular, we found that the regularity at the center of both the seed and final solutions led to important restrictions on the deformation of the spatial metric components. These are particularly restrictive for the MGD method. In this case, we show that if the seed solution is regular at $$r=0,$$ r = 0 , the final solution with invariant complexity factor will be singular at this point unless $$f=0.$$ f = 0 . We also show that solutions with the same temporal components will, in general, lead to the same solutions with vanishing complexity factor in the MGD approach. Finally, we will construct realistic models using different seed solutions such as Tolman IV and FS (Finch–Skeas).

Funder

Universidad de Antofagasta

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3