Observation of seasonal variations of the flux of high-energy atmospheric neutrinos with IceCube

Author:

Abbasi R.,Ackermann M.,Adams J.,Agarwalla S. K.,Aggarwal N.,Aguilar J. A.,Ahlers M.,Alameddine J. M.,Amin N. M.,Andeen K.,Anton G.,Argüelles C.,Ashida Y.,Athanasiadou S.,Axani S. N.,Bai X.,Balagopal V. A.,Baricevic M.,Barwick S. W.,Basu V.,Bay R.,Beatty J. J.,Becker K.-H.,Becker Tjus J.,Beise J.,Bellenghi C.,BenZvi S.,Berley D.,Bernardini E.,Besson D. Z.,Binder G.,Bindig D.,Blaufuss E.,Blot S.,Bontempo F.,Book J. Y.,Borowka J.,Boscolo Meneguolo C.,Böser S.,Botner O.,Böttcher J.,Bourbeau E.,Braun J.,Brinson B.,Brostean-Kaiser J.,Burley R. T.,Busse R. S.,Butterfield D.,Campana M. A.,Carloni K.,Carnie-Bronca E. G.,Chattopadhyay S.,Chen C.,Chen Z.,Chirkin D.,Choi S.,Clark B. A.,Classen L.,Coleman A.,Collin G. H.,Connolly A.,Conrad J. M.,Coppin P.,Correa P.,Countryman S.,Cowen D. F.,Dappen C.,Dave P.,De Clercq C.,DeLaunay J. J.,Delgado López D.,Dembinski H.,Deng S.,Deoskar K.,Desai A.,Desiati P.,de Vries K. D.,de Wasseige G.,DeYoung T.,Diaz A.,Díaz-Vélez J. C.,Dittmer M.,Domi A.,Dujmovic H.,DuVernois M. A.,Ehrhardt T.,Eller P.,Engel R.,Erpenbeck H.,Evans J.,Evenson P. A.,Fan K. L.,Fang K.,Fazely A. R.,Fedynitch A.,Feigl N.,Fiedlschuster S.,Finley C.,Fischer L.,Fox D.,Franckowiak A.,Friedman E.,Fritz A.,Fürst P.,Gaisser T. K.,Gallagher J.,Ganster E.,Garcia A.,Garrappa S.,Gerhardt L.,Ghadimi A.,Glaser C.,Glauch T.,Glüsenkamp T.,Goehlke N.,Gonzalez J. G.,Goswami S.,Grant D.,Gray S. J.,Griffin S.,Griswold S.,Günther C.,Gutjahr P.,Haack C.,Hallgren A.,Halliday R.,Halve L.,Halzen F.,Hamdaoui H.,Ha Minh M.,Hanson K.,Hardin J.,Harnisch A. A.,Hatch P.,Haungs A.,Hauser S.,Helbing K.,Hellrung J.,Henningsen F.,Heuermann L.,Hickford S.,Hidvegi A.,Hill C.,Hill G. C.,Hoffman K. D.,Hoshina K.,Hou W.,Huber T.,Hultqvist K.,Hünnefeld M.,Hussain R.,Hymon K.,In S.,Iovine N.,Ishihara A.,Jacquart M.,Jansson M.,Japaridze G. S.,Jayakumar K.,Jeong M.,Jin M.,Jones B. J. P.,Kang D.,Kang W.,Kang X.,Kappes A.,Kappesser D.,Kardum L.,Karg T.,Karl M.,Karle A.,Katz U.,Kauer M.,Kelley J. L.,Khatee Zathul A.,Kheirandish A.,Kin K.,Kiryluk J.,Klein S. R.,Kochocki A.,Koirala R.,Kolanoski H.,Kontrimas T.,Köpke L.,Kopper C.,Koskinen D. J.,Koundal P.,Kovacevich M.,Kowalski M.,Kozynets T.,Kruiswijk K.,Krupczak E.,Kumar A.,Kun E.,Kurahashi N.,Lad N.,Lagunas Gualda C.,Lamoureux M.,Larson M. J.,Lauber F.,Lazar J. P.,Lee J. W.,Leonard DeHolton K.,Leszczyńska A.,Lincetto M.,Liu Q. R.,Liubarska M.,Lohfink E.,Love C.,Lozano Mariscal C. J.,Lu L.,Lucarelli F.,Ludwig A.,Luszczak W.,Lyu Y.,Ma W. Y.,Madsen J.,Mahn K. B. M.,Makino Y.,Mancina S.,Marie Sainte W.,Mariş I. C.,Marka S.,Marka Z.,Marsee M.,Martinez-Soler I.,Maruyama R.,Mayhew F.,McElroy T.,McNally F.,Mead J. V.,Meagher K.,Mechbal S.,Medina A.,Meier M.,Meighen-Berger S.,Merckx Y.,Merten L.,Micallef J.,Mockler D.,Montaruli T.,Moore R. W.,Morii Y.,Morse R.,Moulai M.,Mukherjee T.,Naab R.,Nagai R.,Nakos M.,Naumann U.,Necker J.,Neumann M.,Niederhausen H.,Nisa M. U.,Noell A.,Nowicki S. C.,Obertacke Pollmann A.,Oehler M.,Oeyen B.,Olivas A.,Orsoe R.,Osborn J.,O’Sullivan E.,Pandya H.,Park N.,Parker G. K.,Paudel E. N.,Paul L.,Pérez de los Heros C.,Peterson J.,Philippen S.,Pieper S.,Pizzuto A.,Plum M.,Popovych Y.,Prado Rodriguez M.,Pries B.,Procter-Murphy R.,Przybylski G. T.,Raab C.,Rack-Helleis J.,Rawlins K.,Rechav Z.,Rehman A.,Reichherzer P.,Renzi G.,Resconi E.,Reusch S.,Rhode W.,Richman M.,Riedel B.,Roberts E. J.,Robertson S.,Rodan S.,Roellinghoff G.,Rongen M.,Rott C.,Ruhe T.,Ruohan L.,Ryckbosch D.,Safa I.,Saffer J.,Salazar-Gallegos D.,Sampathkumar P.,Sanchez Herrera S. E.,Sandrock A.,Santander M.,Sarkar S.,Sarkar S.,Savelberg J.,Savina P.,Schaufel M.,Schieler H.,Schindler S.,Schlüter B.,Schmidt T.,Schneider J.,Schröder F. G.,Schumacher L.,Schwefer G.,Sclafani S.,Seckel D.,Seunarine S.,Sharma A.,Shefali S.,Shimizu N.,Silva M.,Skrzypek B.,Smithers B.,Snihur R.,Soedingrekso J.,Søgaard A.,Soldin D.,Sommani G.,Spannfellner C.,Spiczak G. M.,Spiering C.,Stamatikos M.,Stanev T.,Stein R.,Stezelberger T.,Stürwald T.,Stuttard T.,Sullivan G. W.,Taboada I.,Ter-Antonyan S.,Thompson W. G.,Thwaites J.,Tilav S.,Tollefson K.,Tönnis C.,Toscano S.,Tosi D.,Trettin A.,Tung C. F.,Turcotte R.,Twagirayezu J. P.,Ty B.,Unland Elorrieta M. A.,Upadhyay A. K.,Upshaw K.,Valtonen-Mattila N.,Vandenbroucke J.,van Eijndhoven N.,Vannerom D.,van Santen J.,Vara J.,Veitch-Michaelis J.,Venugopal M.,Verpoest S.,Veske D.,Walck C.,Watson T. B.,Weaver C.,Weigel P.,Weindl A.,Weldert J.,Wendt C.,Werthebach J.,Weyrauch M.,Whitehorn N.,Wiebusch C. H.,Willey N.,Williams D. R.,Wolf M.,Wrede G.,Wulff J.,Xu X. W.,Yanez J. P.,Yildizci E.,Yoshida S.,Yu F.,Yu S.,Yuan T.,Zhang Z.,Zhelnin P.,

Abstract

AbstractAtmospheric muon neutrinos are produced by meson decays in cosmic-ray-induced air showers. The flux depends on meteorological quantities such as the air temperature, which affects the density of air. Competition between decay and re-interaction of those mesons in the first particle production generations gives rise to a higher neutrino flux when the air density in the stratosphere is lower, corresponding to a higher temperature. A measurement of a temperature dependence of the atmospheric $$\nu _{\mu }$$ ν μ flux provides a novel method for constraining hadronic interaction models of air showers. It is particularly sensitive to the production of kaons. Studying this temperature dependence for the first time requires a large sample of high-energy neutrinos as well as a detailed understanding of atmospheric properties. We report the significant ($$> 10 \; \sigma $$ > 10 σ ) observation of a correlation between the rate of more than 260,000 neutrinos, detected by IceCube between 2012 and 2018, and atmospheric temperatures of the stratosphere, measured by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA’s AQUA satellite. For the observed 10$$\%$$ % seasonal change of effective atmospheric temperature we measure a 3.5(3)$$\%$$ % change in the muon neutrino flux. This observed correlation deviates by about 2-3 standard deviations from the expected correlation of 4.3$$\%$$ % as obtained from theoretical predictions under the assumption of various hadronic interaction models.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmic-ray physics at the South Pole;Astroparticle Physics;2024-09

2. Atmospheric muons and their variations with temperature;Astroparticle Physics;2024-09

3. Sibyll;Astroparticle Physics;2024-08

4. Quantum Field Theory of Neutrino Mixing in Spacetimes with Torsion;Universe;2024-04-03

5. Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube;The Astrophysical Journal;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3