Charged dust in higher curvature geometry

Author:

Hansraj Sudan

Abstract

AbstractWe analyze the configuration of charged dust in the context of the higher dimensional and higher curvature Einstein–Gauss–Bonnet–Maxwell theory. With the prescription of dust, there remains one more prescription to be made in order to close the system of equations of motion. The choice of one of the metric potentials appears to be the only viable way to proceed. Before establishing exact solutions, we examine conditions for the existence of physically reasonable charged dust fluids. It turns out that the branches of the Boulware–Deser metric representing the exterior gravitational field of a neutral spherically symmetric Einstein–Gauss–Bonnet distribution, serve as upper and lower bounds for the spatial potentials of physically reasonable charged dust in Einstein–Gauss–Bonnet–Maxwell gravity. Some exact solutions for 5 and 6 dimensional charged dust hyperspheres are exhibited in closed form. In particular the Einstein ansatz of a constant temporal potential while defective in 5 dimensions actually generates a model of a closed compact astrophysical object in 6 dimensions. A physically viable 5 dimensional charged dust model is also contrasted with its general relativity counterpart graphically.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3