A substandard candle: the low-$$\nu $$ method at few-GeV neutrino energies

Author:

Wilkinson C.,Dolan S.,Pickering L.,Wret C.

Abstract

AbstractAs accelerator-based neutrino oscillation experiments improve oscillation parameter constraints with more data, control over systematic uncertainties on the incoming neutrino flux and interaction models is increasingly important. The intense beams offered by modern experiments permit a variety of options to constrain the flux using in situ “standard candle” measurements. These standard candles must use very well understood interaction processes to avoid introducing additional interaction model dependence. One option often discussed in this context is the “low-$$\nu $$ ν ” method, which is designed to isolate neutrino interactions where there is low energy-transfer to the nucleus, such that the interaction cross section is expected to be approximately constant as a function of neutrino energy. The shape of the low-energy transfer event sample can then be used to extract the flux shape. Applications of the method at high neutrino energies (many tens of GeV) are well understood. However, the applicability of the method at the lower energies of current and future few-GeV accelerator neutrino experiments remains unclear due to the presence of nuclear and form-factor effects inherent in the interaction models.In this analysis we examine the prospects for improving constraints on the accelerator neutrino fluxes in situ with the low-$$\nu $$ ν method in an experiment-independent way, using (anti)neutrino interactions on argon and hydrocarbon targets from the GENIE, NEUT, NuWro and GiBUU event generators. We begin by investigating the extent to which deviations from the constant cross-section assumption are dependent on poorly understood aspects of the neutrino interaction model. We then assess whether a low energy-transfer event sample can be confidently identified using experimentally accessible observables. We finally consider how the practicalities of reconstructing the energy spectrum of interacting neutrinos in realistic detectors might further limit the utility of low-$$\nu $$ ν flux constraints. The results show that flux constraints from the low-$$\nu $$ ν method would be severely dependent on the interaction model assumptions used in an analysis of neutrinos with energies below 5 GeV, and anti-neutrinos below at least 15 GeV. The spread of model predictions show that a low-$$\nu $$ ν analysis is unlikely to offer much improvement on typical neutrino flux uncertainties, even with a perfect detector. Notably—running counter to the assumption inherent to the low-$$\nu $$ ν method—the model-dependence increases with decreasing energy transfer for experiments in the few-GeV region.

Funder

CERN

High Energy Physics

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3