Shadow, lensing, quasinormal modes, greybody bounds and neutrino propagation by dyonic ModMax black holes

Author:

Pantig Reggie C.ORCID,Mastrototaro Leonardo,Lambiase GaetanoORCID,Övgün AliORCID

Abstract

AbstractMotivated by recent work on the Modified Maxwell (ModMax) black holes [Phys Lett B 10.1016/j.physletb.2020.136011], which are invariant in duality rotations and conformal transformations founded in [Phys Rev D 10.1103/PhysRevD.102.121703], we probe its effects on the shadow cast, weak field gravitational lensing, and neutrino propagation in its vicinity. Using the EHT data for the shadow diameter of Sgr. A* and M87*, and LIGO/VIRGO experiments for the dyonic ModMax black hole perturbations, we find constraints for ModMax parameters such as $$Q_\text {m}$$ Q m and the screening factor $$\gamma $$ γ . We also analyze how the shadow radius behaves as perceived by a static observer and one that is comoving with the cosmic expansion. The effect of the ModMax parameters is constant for a static observer, and we found That it varies when the observer is comoving with cosmic expansion. We also analyzed its effect on the weak deflection angle by exploiting the Gauss–Bonnet theorem and its application to Einstein ring formation. We also consider the finite distance effect and massive particle deflection. Our results indicate that the far approximation of massive particle gives the largest deflection angle and amplifies the effect of $$Q_\text {m}$$ Q m and $$\gamma $$ γ . Then we also calculate the quasinormal modes and greybody bounds which encode unique characteristic features of the dyonic ModMax black hole. With the advent of improving space technology, we reported that it is possible to detect the deviation caused through the shadow cast, Einstein rings, quasinormal modes, and neutrino oscillations.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3