First results from the AMoRE-Pilot neutrinoless double beta decay experiment
-
Published:2019-09
Issue:9
Volume:79
Page:
-
ISSN:1434-6044
-
Container-title:The European Physical Journal C
-
language:en
-
Short-container-title:Eur. Phys. J. C
Author:
Alenkov V., Bae H. W., Beyer J., Boiko R. S., Boonin K., Buzanov O., Chanthima N., Cheoun M. K., Chernyak D. M., Choe J. S., Choi S., Danevich F. A., Djamal M., Drung D., Enss C., Fleischmann A., Gangapshev A. M., Gastaldo L., Gavriljuk Yu. M., Gezhaev A. M., Grigoryeva V. D., Gurentsov V. I., Gylova O., Ha C., Ha D. H., Ha E. J., Hahn I. S., Jang C. H., Jeon E. J., Jeon J. A., Jo H. S., Kaewkhao J., Kang C. S., Kang S. J., Kang W. G., Kazalov V. V., Kempf S., Khan A., Khan S., Kim D. Y., Kim G. W., Kim H. B., Kim H. J., Kim H. L., Kim H. S., Kim I., Kim S. C., Kim S. G., Kim S. K., Kim S. R., Kim W. T., Kim Y. D., Kim Y. H.ORCID, Kirdsiri K., Ko Y. J., Kobychev V. V., Kornoukhov V., Kuzminov V. V., Kwon D. H., Lee C., Lee E. K., Lee H. J., Lee H. S., Lee J. S., Lee J. Y., Lee K. B., Lee M. H., Lee M. K., Lee S. W., Lee S. W., Lee S. H., Leonard D., Li J., Li J., Li Y., Limkitjaroenporn P., Makarov E. P., Oh S. Y., Oh Y. M., Olsen S. L., Pabitra A., Panasenko S. I., Pandey I., Park C. W., Park H. K., Park H. S., Park K. S., Park S. Y., Poda D. V., Polischuk O. G., Prihtiadi H., Ra S. J., Ratkevich S. S., Rooh G., Sari M. B., Seo K. M., Shin J. W., Shin K. A., Shlegel V. N., Siyeon K., So J. H., Son J. K., Srisittipokakun N., Sujita K., Tretyak V. I., Wirawan R., Woo K. R., Yoon Y. S., Yue Q., Zaman S. U.
Abstract
Abstract
The advanced molybdenum-based rare process experiment (AMoRE) aims to search for neutrinoless double beta decay ($$0\nu \beta \beta $$0νββ) of $$^{100}$$100Mo with $$\sim 100\,\hbox {kg}$$∼100kg of $$^{100}$$100Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $$^{48}$$48Ca-depleted calcium and $$^{100}$$100Mo-enriched molybdenum ($$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$48deplCa100MoO4). The simultaneous detection of heat (phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $$0\nu \beta \beta $$0νββ search with a 111 kg day live exposure of $$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$48deplCa100MoO4 crystals. No evidence for $$0\nu \beta \beta $$0νββ decay of $$^{100}$$100Mo is found, and a upper limit is set for the half-life of $$0\nu \beta \beta $$0νββ of $$^{100}$$100Mo of $$T^{0\nu }_{1/2} > 9.5\times 10^{22}~\hbox {years}$$T1/20ν>9.5×1022years at 90% C.L. This limit corresponds to an effective Majorana neutrino mass limit in the range $$\langle m_{\beta \beta }\rangle \le (1.2-2.1)\,\hbox {eV}$$⟨mββ⟩≤(1.2-2.1)eV.
Funder
National Academy of Sciences of Ukraine Institute for Basic Science Moscow Engineering Physics Institute Academic Excellence Project
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference65 articles.
1. Y. Fukuda, T. Hayakawa, E. Ichihara et al., Phys. Rev. Lett. 81, 1562 (1998).
https://doi.org/10.1103/PhysRevLett.81.1562 2. B.T. Cleveland, T. Daily, J. Raymond Davis, et al., Astrophys. J. 496(1), 505 (1998).
http://stacks.iop.org/0004-637X/496/i=1/a=505 3. Q.R. Ahmad, R.C. Allen, T.C. Andersen et al., Phys. Rev. Lett. 87, 071301 (2001).
https://doi.org/10.1103/PhysRevLett.87.071301 4. G.L. Fogli, E. Lisi, A. Marrone et al., Phys. Rev. D 86, 013012 (2012).
https://doi.org/10.1103/PhysRevD.86.013012 5. B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958).
http://www.jetp.ac.ru/cgi-bin/dn/e_007_01_0172.pdf
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|