Abstract
AbstractIn this paper, we investigate the dark energy phenomenon by studying the Tsallis holographic dark energy within the framework of Brans–Dicke (BD) scalar–tensor theory of gravity (Brans and Dicke in Phys. Rev. 124:925, 1961). In this context, we choose the BD scalar field $$\phi $$ϕ as a logarithmic function of the average scale factor a(t) and Hubble horizon as the IR cutoff ($$L=H^{-1}$$L=H-1). We reconstruct two cases of non-interacting and interacting fluid (dark sectors of cosmos) scenario. The physical behavior of the models are discussed with the help of graphical representation to explore the accelerated expansion of the universe. Moreover, the stability of the models are checked through squared sound speed $$v_s^2$$vs2. The well-known cosmological plane i.e., $$\omega _{de}-\omega ^{\prime }_{de}$$ωde-ωde′ is constructed for our models. We also include comparison of our findings of these dynamical parameters with observational constraints. It is also quite interesting to mention here that the results of deceleration, equation of state parameters and $$\omega _{de}-\omega ^{\prime }_{de}$$ωde-ωde′ plane coincide with the modern observational data.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献