Parton distributions with theory uncertainties: general formalism and first phenomenological studies

Author:

Abdul Khalek Rabah,Ball Richard D.,Carrazza Stefano,Forte StefanoORCID,Giani Tommaso,Kassabov Zahari,Pearson Rosalyn L.,Nocera Emanuele R.,Rojo Juan,Rottoli Luca,Ubiali Maria,Voisey Cameron,Wilson Michael

Abstract

AbstractWe formulate a general approach to the inclusion of theoretical uncertainties, specifically those related to the missing higher order uncertainty (MHOU), in the determination of parton distribution functions (PDFs). We demonstrate how, under quite generic assumptions, theory uncertainties can be included as an extra contribution to the covariance matrix when determining PDFs from data. We then review, clarify, and systematize the use of renormalization and factorization scale variations as a means to estimate MHOUs consistently in deep inelastic and hadronic processes. We define a set of prescriptions for constructing a theory covariance matrix using scale variations, which can be used in global fits of data from a wide range of different processes, based on choosing a set of independent scale variations suitably correlated within and across processes. We set up an algebraic framework for the choice and validation of an optimal prescription by comparing the estimate of MHOU encoded in the next-to-leading order (NLO) theory covariance matrix to the observed shifts between NLO and NNLO predictions. We perform a NLO PDF determination which includes the MHOU, assess the impact of the inclusion of MHOUs on the PDF central values and uncertainties, and validate the results by comparison to the known shift between NLO and NNLO PDFs. We finally study the impact of the inclusion of MHOUs in a global PDF determination on LHC cross-sections, and provide guidelines for their use in precision phenomenology. In addition, we also compare the results based on the theory covariance matrix formalism to those obtained by performing PDF determinations based on different scale choices.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference97 articles.

1. Physics of the HL-LHC Working Group Collaboration, M. Cepeda et al., Higgs Physics at the HL-LHC and HE-LHC. arXiv:1902.00134

2. HL-LHC, HE-LHC Working Group Collaboration, P. Azzi et al., Standard model physics at the HL-LHC and HE-LHC. arXiv:1902.04070

3. J. Gao, L. Harland-Lang, J. Rojo, The Structure of the Proton in the LHC Precision Era. Phys. Rept. 742, 1–121 (2018). arXiv:1709.04922

4. NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). arXiv:1410.8849

5. NNPDF Collaboration, R.D. Ball et al., Parton distributions from high-precision collider data. Eur. Phys. J. C 77(10), 663 (2017). arXiv:1706.00428

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3