Abstract
Abstract
Structure and stability of nanometer-sized Ag887, Au887 and Ti787 clusters soft-landed on graphite (at deposition energies Edep = 0.001 − 5.0 eV per atom) are studied by means of molecular dynamics simulations. Parameters for the cluster–surface interactions are derived from complementary ab initio calculations. The shape and the contact angle of deposited clusters are systematically analyzed for different deposition energies and temperature regimes. The Ag887 cluster deposited at Edep ≲ 0.1 eV/atom undergoes collision-induced plastic deformation, thus acquiring an ellipsoidal shape with the contact angle close to 180°. In contrast, Au887 and Ti787 clusters undergo a collision-induced melting phase transition followed by their recrystallization; these processes lead to the formation of the droplet-like shapes of the clusters in a form of truncated spheroids. At larger deposition energies all clusters flatten over the surface and eventually disintegrate at Edep ≈ 0.75 − 1.0 eV/atom (for Ag887 and Au887) and ≈3 eV/atom (for Ti787). It is found also that the shape of deposited clusters is strongly influenced by the strength of cluster–substrate interaction and the corresponding interaction mechanism, namely the weak van der Waals interaction between metal and carbon atoms or the van der Waals interaction with an onset of covalent bonding. Similar phenomena should arise in the deposition of clusters made of other elements, which interact with a substrate by one of the above-described mechanisms.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics
Reference64 articles.
1. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)
2. K.-H. Meiwes-Broer, Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer Verlag, Berlin, Heidelberg, 2000)
3. J.-P. Connerade, A.V. Solov’yov, Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale (Imperial College Press, 2008)
4. K. Bromann, C. Félix, H. Brune, W. Harbich, R. Monot, J. Buttet, K. Kern, Science 274, 956 (1996)
5. S.J. Carroll, P. Weibel, B. von Issendorff, L. Kuipers, R.E. Palmer, J. Phys.: Condens. Matter 8, L617 (1996)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献