Improved estimation of drift coefficients using optimal local bandwidths

Author:

Wiedemann ChristianORCID,Wächter Matthias,Peinke Joachim,Freund Jan A.

Abstract

AbstractStochastic differential equations (SDEs) are commonly used to model various systems. Data-driven methods have been widely used to estimate the drift and diffusion terms of a Langevin equation. Among the most commonly used estimation methods is the Nadaraya–Watson estimator, which is a non-parametric data-driven approach. In this study, we propose a method to improve the estimation of the drift coefficient of a stochastic process using optimal local bandwidths that minimize the error of the approximation of the first conditional moments of a univariate system. This approach is compared to a global bandwidth estimation and an estimation based on a fixed number of nearest neighbors. The proposed method has the potential to reduce the error of the drift estimation, thereby improving the accuracy of the model.

Funder

Carl von Ossietzky Universität Oldenburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3