Selective cooling and squeezing in a lossy optomechanical closed loop embodying an exceptional surface

Author:

Sütlüoğlu Ege BeyzaORCID,Bulutay CeyhunORCID

Abstract

AbstractA closed-loop, lossy optomechanical system consisting of one optical and two degenerate mechanical resonators is computationally investigated. This system constitutes an elementary synthetic plaquette derived from the loop phase of the intercoupling coefficients. In examining a specific quantum attribute, we delve into the control of quadrature variances within the resonator selected through the plaquette phase. An amplitude modulation is additionally applied to the cavity-pumping laser to incorporate mechanical squeezing. Our numerical analysis relies on the integration-free computation of steady-state covariances for cooling and the Floquet technique for squeezing. We provide physical insights into how non-Hermiticity plays a crucial role in enhancing cooling and squeezing in proximity to exceptional points. This enhancement is associated with the behavior of complex eigenvalue loci as a function of the intermechanical coupling rate. Additionally, we demonstrate that the parameter space embodies an exceptional surface, ensuring the robustness of exceptional point singularities under experimental parameter variations. However, the pump laser detuning breaks away from the exceptional surface unless it resides on the red-sideband by an amount sufficiently close to the mechanical resonance frequency. Finally, we show that this disparate parametric character entitles frequency-dependent cooling and squeezing, which is of technological importance.

Funder

Bilkent University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3